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Abstract: Stress hormones in chickens can affect behavioral and physical traits,
including egg production in hens. This paper makes use of genomic and statistical
tools to determine quantitative trait loci (QTL) in chicken DNA that code for the pro-
duction of three stress hormones. This was done by creating two models: �rst ob-
taining QTL data, performing multiple genetic mainscans, con�dence interval graphs,
and effect plots, and later correlating the results with an experiment model of egg pro-
duction percent for two test groups. It was found that the production of Aldosterone
is coded signi�cantly on chromosome 5, DHEA on chromosomes 4 and 21, and Cor-
ticosterone on chromosomes 3 and 7. It has also been concluded that Corticosterone
levels correlate with speci�c genotypes at particular loci, and that Corticosterone plays
a signi�cant role in a chicken's ability to lay eggs. Using the �ndings determined by
this paper, it is possible to provide geneticists and poultry-owners with valuable infor-
mation concerning the production of stress hormones and how it can affect egg-laying
capabilities.
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using genetic and statistical models. These mod-
els show the locations where phenotypic traits
are coded and can be used for genetic engineer-
ing and analysis.

Red Junglefowl Chickens,Gallus Gallus, are
considered the ancestors of today's domes-
ticated chickens. Since their domestication
around 5000 years ago, these chickens have dis-
persed and live all over the world[1]. Subspecies
of the Red Junglefowl and other chicken breeds
are used by humans worldwide for their valuable
source of meat and production of edible eggs.
Many factors can affect a chicken's ability to
lay eggs, including habitat, nutrition, and stress
factors. Examples of the stressors chickens face
include extreme temperature, lack of food, and
predation[2]. In response to these stress factors,
chickens produce stress hormones, which are se-
creted from the adrenal cortex[5]. It is possi-
ble to measure these levels of stress hormones,
making it feasible to perform genomic studies
on these stress hormones in chickens. Using a
genetic QTL analysis of chicken DNA data, it
is possible to see the speci�c locations on the
chickens' chromosomes that code for produc-
tion of various hormones.

The term ”QTL” is used throughout this paper to
refer to quantitative trait loci, genetic locations
on an organism's DNA that have been been sta-
tistically proven to have a large in�uence over
a physical trait, or phenotype[7]. In doing this
type of research, it is necessary to understand
that organisms have genetic information coded
on chromosomes, and genes make up proteins,
which code for various phenotypes. In order to
study these QTL, data must �rst be created and
mapped using computational models. To create
the data, a sample size of one type of organism
(typically a few hundred) is selected for study.
To produce the best results, this sample is often

comprised of phenotypically diverse individuals
of the same species[7]. Next, phenotypes such
as size, and in the case of this paper, hormone
levels, are quantitatively measured for each in-
dividual. Blood is then extracted from each in-
dividual and DNA is separated from other ma-
terials, often by the use of a centrifuge. The
extracted genetic material is �nally run through
various computers and DNA sequencers to cre-
ate the QTL data. Genetic markers are used
in this �eld of study to measure chromosome
length (in centimorgans) and to estimate where
QTL might be located[7].

The terms ”loci” and ”LOD scores” are also
technical terms used frequently in this pa-
per. Loci are the plural form for locus, and
are used to describe signi�cant genetic loca-
tions that have in�uence over phenotypes[7].

Figure 1: This diagram
shows a pair of chromo-
somes, and suggests how
QTL can be found using
genetic markers[3].

LOD stands for
”Logarithm of the
Odds” and its score
can be used to mea-
sure genetic link-
age of a loci to a
phenotype. In ge-
nomic research, a
LOD score of 3 or
greater is generally
considered signi�-
cant in the coding
for traits[7].

Figure 1 shows a
diagram of two
chromosomes and
demonstrates how
QTL are located.
Pairs of chromo-
somes are connected by centromeres, the region
above the centromere is called the P-arm, and
the region below the centromere is called the
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Q-arm. QTL are located on either arm and are
surrounded by one genetic marker on each side,
represented by M1 and M2. These markers fa-
cilitate the process of �nding signi�cant loci and
are used in creating the QTL data sets.

Female chickens have the ability to produce ed-
ible eggs almost daily, all without male fertil-
ization. Many factors contribute to the ef�-
ciency of egg production, including age, breed,



cross. Along with basic information such as
sex, an ID number, and parental grandmother,
this data set contains the phenotypes for brain
mass, metatarsus length, and amounts of various
stress induced hormones, as well as logarithmi-
cally transformed values for some of the pheno-
types. Although some of the phenotypes in this
data set can't be genetically analyzed, there is a
total of 79 phenotypes in this data set.

The �rst steps in this model included clearing
previous data and setting the R directory to a
designated desktop folder. After �rst down-
loading the R/qtl library, it was loaded into the
model[8]. Next, the data was loaded into the
R script and information was entered to tell
the program that AA represents a homozygous
dominant genotype, BB represents a homozy-
gous recessive genotype, AB represents a het-
erozygous genotype, and a dash (-) represents
missing data. The function ”jittermap” was then
used to move the genetic markers apart slightly
so that the results were more reliable. The ”sum-
mary” and ”names” commands printed useful
information about the type of cross, number and
phenotype names, number of genetic markers,
and percentages by genotype. As described in
the previous paragraph, these functions describe
the data set as having information for 232 indi-
viduals, 79 phenotypes, and 739 genetic markers
for 29 chromosomes.

The next three commands in the code output
graphs that suggest the reliability of the data.
Est.rf displays a graph of recombination frac-
tions with LOD scores. Plot.map displays a
genetic map that contains all 29 chromosomes,
their lengths in centimorgans, and the locations
of all 739 markers. Plot.missing shows available
data in white and missing data in black.

The next portion of this model renames vari-

ables within this data set for later analysis and
uses the hist() command to produce histograms
for the data of three hormone levels (Aldos-
terone Log, DHEA Log, and Corticosterone Re-
sponse).

The �nal diagnostic used to visualize the reli-
ability of the data was a collection of qq plots
that compared theoretical quantities with sample
quantities for each of the three chosen pheno-
types. In addition to the three list plots, a linear
regression line was added to each to more easily
see the strength of each correlation.

After performing the initial diagnostic tests, the
mainscans could be produced. Before creat-
ing mainscans for each of the three hormone
phenotypes, a genetic probability map had to
be created and genome probability calculations
had to be carried out in order to calculate what
an ideal scan should look like. For these two
tests, the Haldane method and a �xed step width
was used[12]. After producing this ideal model,
mainscans were created for the traits of Aldos-
terone, DHEA, and Corticosterone. For each
scan, the correct phenotype column was entered,
the EM algorithm was used, and the scans were
run for 100 permutations[13]. After running
each scan, the three mainscans were plotted with
con�dence thresholds at 67%, 90%, and 95%,
as designated by the blue, red, and green lines.
After the model �nished running and graph-
ing each scan, it also output a text description,
showing signi�cant chromosomes, the exact lo-
cations, and LOD scores.

The �nal portion of the R/qtl model analyzed the
Corticosterone response in greater detail. First,
two con�dence interval plots were created for
chromosomes 3 and 7 to show more precise
genetic locations that code for Corticosterone
production. As in the mainscans, a con�dence
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threshold of 95% was used to obtain accurate
results. The green lines near the bottom of the
graphs represent length intervals that likely con-
tain signi�cant loci that code for Corticosterone
response. Two effect plots were created for Cor-
ticosterone response, one for each of the loci on
chromosomes 3 and 7. These two plots show
which genotypes at a speci�c loci tend to corre-
late with a higher, lower, or medium Corticos-
terone production amount.

After completing and running the R/qtl model,
one additional model was constructed in Mathe-
matica to demonstrate how Corticosterone levels
in chickens affect egg-laying abilities[9]. This
model �rst imports the downloaded data set.
The data used in this model was found in the pa-
per by Shini[11]. After importing the data, the

model deletes the two header rows and trans-
poses the data so that each column is de�ned
by a variable (age, control egg production per-
cent, and Corticosterone egg production per-
cent). Lastly, this model graphs the two ex-
perimental groups as separate lines on the same
graph, with age in weeks as the independent
variable and egg production percent as the de-
pendent variable.

Results and Discussion

The graphs produced in the �rst part of the R/qtl
model give basic information about the avail-
able genetic data. Shown in �gures 2, 3, and 4,
these diagnostics include a recombination frac-
tion graph, chromosome map, and missing data
graph.

Figure 2: This graph displays the pairwise recombination fractions with LOD scores for each
marker on all 29 chromosomes.
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Figure 3: This graph displays the locations of all 739 genetic markers on the chromosomes. Each
horizontal line represents a genetic marker and each vertical line represents the length of each
chromosome, measured in centimorgans. Chromosome 1 is clearly the longest chromosome, and
also seems to have the most genetic markers in this map.
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Figure 4: This plot shows available genetic data in white and missing data in black. Because there



Figure 7: This graph shows a histogram of the
Corticosterone values. Although shifted slightly
to the left, the values are in a bell-shaped curve,
meaning the results will be moderately reli-
able.

Figure 8: This is a qq plot of theoretical and
sample Aldosterone quantities. The linear re-
gression is almost a 45 degree diagonal line and
the data points are close to the regression, sug-
gesting a near-perfect correlation and strong re-
sults.

Figure 9: This is a qq plot of theoretical
and sample DHEA quantities. The linear re-
gression is almost 45 degrees and the data
points have slight variation, which demonstrates
near-perfect correlation and strong results.

Figure 10: The �nal qq plot is a graph of theo-
retical and sample Corticosterone values. This
graph shows a strong correlation, suggesting re-
liable results.

The next portion of the R/qtl model produced
three phenotypic mainscans, for Aldosterone
level, DHEA level, and Corticosterone level.
Figures 11, 12, and 13 show these mainscans
with text output embedded. The x-axis dis-
plays the locations of each genetic marker, and
the y-axis displays LOD scores. High peaks
represent high LOD scores, indicating signif-
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icant loci that likely contribute to the coding
of each trait. Loci with LOD scores greater
than 3 can be considered signi�cant and loci
with LOD scores greater than the 95% con-
�dence threshold were identi�ed in this pa-
per. Con�dence thresholds were included for
67%, 90% and 95% con�dence, shown by
the blue, red, and green lines in each scan.

Figure 11: This graph shows an Aldosterone
Mainscan. Three high peaks appear to be above
a LOD score of 3 and only one appears to be
above the 95% threshold. It is easy to visualize
this signi�cant locus as being on chromosome
5, and this is veri�ed with the text output, which
shows a signi�cant locus on chromosome 5, at
a location of 855 centimortans, and with a LOD
score of 3.98.

Figure 12: This graph shows a DHEA Main-
scan. Multiple high peaks appear to be above
a LOD score of 3 and two appears to be above
the 95% green threshold line. After visual anal-
ysis it seems one very high peak is located near
chromosome 21 and one lower peak near chro-
mosome 4. These results are con�rmed with
the text summary, which suggests two signi�-
cant loci: one on chromosome 4, at 1174 cen-
timorgans, with a LOD score of 4.75 and one
on chromosome 21, near position 0, with a LOD
score of 6.91.

Figure 13: This �nal mainscan displays the data
for Corticosterone. Multiple high peaks appear
to be above a LOD score of 3 and two appear
to be above the 95% green threshold line. It is
easy to visualize these signi�cant loci as being
on chromosomes 3 and 7. These results are also
veri�ed with the text output, which shows sig-
ni�cant loci on chromosome 3, at 1119 centi-
morgans, with a LOD score of 4.04, and chro-
mosome 7, at 342 centimorgans with a LOD
score of 4.05. Because the two LOD scores for
these two loci are so similar, it is likely that they
both code almost equally for Corticosterone pro-
duction.

After identifying the two signi�cant loci for
Corticosterone production, two con�dence in-
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terval scans were created. The point of using
this type of diagnostic is to localize the individ-
ual signi�cant loci of chromosome 3, as seen in
�gure 14. The second is of loci on chromosome
7 and can be seen in �gure 15. The green line
near the bottom of each graph represents a range
that likely contains the most signi�cant loci on
each chromosome.

Figure 14: This con�dence interval plot shows
a signi�cant interval of about 840 to 1120 centi-
morgans on chromosome 3, as suggested by the
green interval line.

Figure 15: This con�dence interval plot shows
a signi�cant interval of about 355 to 460 centi-
morgans on chromosome 7, as suggested by the
green interval line.

The �nal part of the R/atl model produced two





production differently. A computational chem-
istry model could be used to analyze hormone
structure differences or dissociation constants,
and could provide insight as to why different
hormones cause different effects.
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Data Tables and Code

Figure 5: Egg Production Affected by Corticosterone Datatable

R/qtl Code

# R script for analyzing QTL data in Chickens
# Alexander Adler
# Chicken Stress Hormone QTL dataset
# December 27, 2016

# clean things up
rm(list=ls())
# set working directory
setwd("/Users/aadler/Desktop/RFolder")

# load the QTL library
# NOTE! I first had to INSTALL the library using: install.packages("qtl")
# Now I can use the package qtl
library(qtl)
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# Load the data
chicken <- read.cross("csv", file="Chicken.csv",
genotypes = c("AA","AB","BB"), na.strings = "-", alleles = c("A","B"))
# Use jittermap to move markers apart slightly so my results are better
jittermap(chicken)
# A summary of the cross gives me some basic data
summary(chicken)
# the names function tells me what phenotypes are in this dayaset
names(chicken$pheno)
# take a look at my data, make sure it’s pretty clean
chicken <- est.rf(chicken)
plot.rf(chicken)
# It’s nice to see my genetic map -- all of the horizontal lines are genetic
# markers that have been inserted
plot.map(chicken)
# It’s often the case that I have missing data -- plot.missing shows me
# where it is
plot.missing(chicken)

# renames variables for later use
ALD <- chicken$pheno$aldosterone_log2
DHEA <- chicken$pheno$DHEA_log
CORT <- chicken$pheno$cort_response

# histogram of Aldosterone Log phenotype
hist(chicken$pheno$aldosterone_log2, main = "Histogram of Aldosterone Log")
# histogram of DHEA Log phenotype
hist(chicken$pheno$DHEA_log, main = "Histogram of DHEA Log")
# histogram of Corticosterone phenotype
hist(chicken$pheno$cort_response, main = "Histogram of Corticosterone
Response")

# Another diagnostic (qq plots with linear regression lines)....if my data is
# relatively clean, I should get nice 45 degree diagonal lines
qqnorm(ALD, main = "qq plot of Aldosterone Log")
qqline(ALD, main = "qq plot of Aldosterone Log")
qqnorm(DHEA, main = "qq plot of DHEA Log")
qqline(DHEA, main = "qq plot of DHEA Log")
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qqnorm(CORT, main = "qq plot of Corticosterone Response")
qqline(CORT, main = "qq plot of Corticosterone Response")

# Now I’m going to generate a mainscan. First, I calculate what the scan
# should look like, so I’m going to calculate a genetic probability map.
chicken <- calc.genoprob(chicken, step = 2.0, off.end = 0.0, error.prob =
1.0e-4, map.function = "haldane", stepwidth = "fixed" )

# Run a simulated geno probability calculation
chicken <- sim.geno(chicken, step = 2.0, n.draws=32, error.prob = 1.0e-4,
map.function = "haldane", stepwidth = "fixed" )

# Perform the mainscan for the CORT Response QTL
# I’m going to run this Cort Response scan for 100 "permulations"
chicken.scanCORT <- scanone(chicken, pheno.col = 26, model = "normal",
method = "em")
chicken.scanCORT.perm <- scanone(chicken, pheno.col = 26, model = "normal",
method = "em", n.perm = 100)
# plot the CORT response mainscan
plot(chicken.scanCORT, main = "Mainscan of Corticosterone")
# I’m putting threshold lines at 67% confidence, 90% confidence, and 95%
# confidence.
thresh <- summary(chicken.scanCORT.perm, alpha = c(0.33, 0.10, 0.05))
abline(h=thresh[1], col = "blue")
abline(h=thresh[2], col = "red")
abline(h=thresh[3], col = "green")
# I’d like to see a text-based output of my CORT scan
summary(chicken.scanCORT, perm=chicken.scanCORT.perm, lodcolumn = 1,
alpha = 0.05)

# Perform the mainscan for the Aldosterone QTL
# I’m going to run this ALD scan for 100 "permulations"
chicken.scanALD <- scanone(chicken, pheno.col = 78, model = "normal",
method = "em")
chicken.scanALD.perm <- scanone(chicken, pheno.col = 78, model = "normal",
method = "em", n.perm = 100)
# plot the ALD mainscan
plot(chicken.scanALD, main = "Mainscan of Aldosterone")
# I’m putting threshold lines at 67% confidence, 90% confidence, and 95%
# confidence.
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thresh <- summary(chicken.scanALD.perm, alpha = c(0.37, 0.10, 0.05))
abline(h=thresh[1], col = "blue")
abline(h=thresh[2], col = "red")
abline(h=thresh[3], col = "green")
# I’d like to see a text-based output of my ALD scan
summary(chicken.scanALD, perm=chicken.scanALD.perm, lodcolumn = 1,
alpha = 0.05)

# Perform the mainscan for the DHEA QTL
# I’m going to run this DHEA scan for 100 "permulations"
chicken.scanDHEA <- scanone(chicken, pheno.col = 79, model = "normal",
method = "em")
chicken.scanDHEA.perm <- scanone(chicken, pheno.col = 79, model = "normal",
method = "em", n.perm = 100)
# plot the DHEA mainscan
plot(chicken.scanDHEA, main = "Mainscan of DHEA")
# I’m putting threshold lines at 67% confidence, 90% confidence, and 95%
confidence.
thresh <- summary(chicken.scanDHEA.perm, alpha = c(0.37, 0.10, 0.05))
abline(h=thresh[1], col = "blue")
abline(h=thresh[2], col = "red")
abline(h=thresh[3], col = "green")
# I’d like to see a text-based output of my DHEA scan
summary(chicken.scanDHEA, perm=chicken.scanDHEA.perm, lodcolumn = 1,
alpha = 0.05)

# Confidence Interval Plots for CORT
# First CI plot for CORT
CIchr3 <- bayesint(chicken.scanCORT, chr=3, prob=0.95)
plot(chicken.scanCORT, chr=3, lodcolumn = 1, main = "Confidence Interval for
Chr 3: Corticosterone")
lines(x=CIchr3[c(1,3), 2], y=c(0,0), type = "l", col = "green", lwd=4)
CIchr3[c(1,3),2]
# second CI plot for CORT
CIchr7 <- bayesint(chicken.scanCORT, chr=7, prob=0.95)
plot(chicken.scanCORT, chr=7, lodcolumn = 1, main = "Confidence Interval for
Chr 7: Corticosterone")
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lines(x=CIchr7[c(1,3), 2], y=c(0,0), type = "l", col = "green", lwd=4)
CIchr7[c(1,3),2]

# do an effect plot for CORT
par(mfrow=c(1,2))
firstCORTeffect <- find.marker(chicken, chr = 3, pos = 1119)
effectplot(chicken, pheno.col = 26, mname1 = firstCORTeffect, main =
"Effect Plot for Cort: Chr 3")
secondCORTeffect <- find.marker(chicken, chr = 7, pos = 352)
effectplot(chicken, pheno.col = 26, mname1 = secondCORTeffect, main =
"Effect Plot for Cort: Chr 7")

# All done
detach(cross)
#EOF

Mathematica Code

eggData = Import["/Users/aadler/Desktop/EggData.csv"];
Grid[eggData, Frame -> All]

eggDataNoLabels = Delete[eggData, 1];
eggDataNoLabels2 = Delete[eggDataNoLabels, 1];
{age, eggProduction, eggProduction2} = Transpose[eggDataNoLabels2];

control = Transpose[{age, eggProduction}];
cortTreated = Transpose[{age, eggProduction2}];
dataplot =

ListLinePlot[{control, cortTreated}, Mesh -> Full,
AxesLabel -> {Age in weeks, Egg Production Percent}, PlotLabels ->

{Control, Cortisol Treated},
PlotLabel -> "Egg Production Percent by Age"]
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